Anodizing film offers vital wear resistance in addition to providing a protective surface film and industrial grade decoration for aluminum.
In particular, standard anodizing and hard anodizing are utilized for numerous industrial products due to their extremely hard and strong nature.
・Good Wear Resistance
Extensively used for the sliding parts of industrial goods. As a sliding material, extremely resistant to abrasive wear※ thanks to excellent hardness.
※Abrasive Wear:wearing out of a surface when a contaminant gets in the space between two friction surfaces.
・Large Friction Coefficient
The fit with the mating friction surface may be less than ideal due to friction conditions. Particularly bad cases may result in locking up and wearing in the form of scoring and seizing.
Wouldn’t the addition of lubrication to anodizing further enhance its advantages?
It was this idea that led to the development of molybdenum disulfide impregnated anodizing.
The answer was Kashima Coat.
Molybdenum disulfide impregnated anodizing (herein called Kashima Coat) is a compound anodizing where the micropores (diameter of 100Åto several hundred Å, several 100 million/mm2) of the anodizing film are impregnated with solid lubricant in the form of molybdenum disulfide using electrochemical methods.
Combining the advantages of both materials creates a strong, wear resistant, and well lubricated product.
Applicable as material for sliding parts demanding a low friction coefficient, smooth kinetic friction, and long-term wear resistance. It is generally difficult to impregnate the micropores of an anodizing film. Solid substances are especially troublesome to impregnate due to their shape and size.
Development aimed to formulate a method of synthesizing molybdenum disulfide inside these micropores capable of completely impregnating them from the base up.
Complete impregnation to the base of micropores has the distinct advantage of providing lubrication via the molybdenum disulfide until the anodizing layer itself is completely worn away.
The aluminum or aluminum alloy is first subject to primary electrolysis in an electrolytic bath of sulfuric acid or oxalic acid to form a porous anodizing film.
Next, the product treated with anodizing is put in a solution mainly consisting of the thiosulfate in molybdenum where it becomes an anode in the secondary electrolysis process.
Doing so deposits molybdenum sulfide in the micropores where it solidifies.
This molybdenum disulfide deposition process is inferred in the following way.
Using an X-ray microanalyser to examine the progress of molybdenum sulfide deposition during secondary electrolysis reveals that initial deposition begins at the base (barrier layer) of the micropores and works its way to the entrance of each pore with time, filling the micropores. It also shows that further electrolysis will result in black deposits on the anodizing film’s surface.
Voltage rises with time in a linear manner as the secondary electrolysis solution is neutral and a barrier layer develops due to the anodic oxide reaction of aluminum during secondary electrolysis. The barrier layer develops in this way as the voltage rises and secondary electrolysis progresses, so the electrolytic reaction progresses sequentially from the barrier layer’s thinnest point. This results in extremely uniform electrodeposition and a thicker barrier layer that enhance corrosion resistance.
The lubrication properties of Kashima Coat’s anodizing film are shown in Fig. 3, Chart 1.
In this test a disc of each material is placed over the test piece in a taber machine to measure the frictional force when the test piece is rotated. The result of frictional force divided by load is called the frictional coefficient. According to testing, lubrication treatment lowers the friction coefficient of each metal by 1/2-1/3. Moreover, the surface of test pieces after the test remains smooth and virtually free of scoring, confirming good conformability with the mating material.
Chart 1. Friction Coefficient Variation due to Molybdenum Disulfide Impregnation
Mating Friction Surface | Hardened Steel | Hard Steel | Brass | Hard Chrome Plating |
---|---|---|---|---|
Anodizing Treatment | 0.64 | 0.66 | 0.40 | 0.64 |
Kashima Coat Treatment | 0.23 | 0.30 | 0.24 | 0.28 |
Mating Friction Surface | Hardened Steel | Hard Steel |
---|---|---|
Anodizing Treatment | 0.64 | 0.66 |
Kashima Coat Treatment | 0.23 | 0.30 |
Mating Friction Surface | Brass | Hard Chrome Plating |
---|---|---|
Anodizing Treatment | 0.40 | 0.64 |
Kashima Coat Treatment | 0.24 | 0.28 |
Friction coefficient reduced by1/2-1/3
The aforementioned characteristics make Kashima Coat a promising wear resistant material utilizing self-lubrication.
Here we will introduce experimental examples of various pulleys, rollers, and guides used on our electrical wire production line that have been trial manufactured for practical evaluation
There is a roller that is slid sideways as it winds up thin electrical wire covered with polyethylene and vinyl chloride. This roller necessitates a low friction coefficient for smooth sliding and durability. The trial roller produced has operated satisfactorily and maintained a low friction coefficient even after two years of use.
For comparative testing, rollers only coated with hard chrome plating or anodizing treatment were tested and immediately became unusable due to an excessive friction coefficient that prevented smooth sliding. Approximately 200μ thick rollers coated with Teflon® resin displayed an extremely low initial friction coefficient which tended to increase as the Teflon® resin layer wore during use. Compared with other parts such as guides and pulleys only coated with anodizing, Kashima Coat has an enhanced friction coefficient and long lifespan. A notable characteristic is the increased difficulty with which copper powder adhered to the lubricating surface when applied to bare copper wire.
Other areas now planned for application include a full range of industrial parts starting with sliding parts in cameras, automobiles, and the electric industry.
The above in-house examples have successfully verified the practical value of Kashima Coat.